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1. Introduction

Lunar physical ephemerides, tabulated daily including libration, can be found in Section D of The Astronom-
ical Almanae (AsA). This technical note describes the method used for calculating the lunar librations and
other quantities on the odd pages D7-D21 of the AsA with effect from the 2011 edition. Prior to the 1985
edition, formulae and constants for the physical ephemeris of the Moon were due to Hayn (1907). Beginning
with the 1985 edition, librations have been generated using the analytical theory of Eckhardt (1981, 1982).

Since the inclusion of a rotational ephemeris for the Moon given in the form of three BEuler angles in the
JPL lunar ephemerides starting with DE403/LE403, Standish et al. {1995), it has been a long-standing
goal to implement these ephemerides in the calculation of lunar librations and improve the quality of the
tabulated physical ephemerides of the Moon in Section D). Work started by Hilton (2004) on interpreting
these ephemerides has paved the way to the work presented here which describes the calculation of librations
and related quantities as they have been implemented starting with the 2011 edition of the AsA. This
technical note has been written with the practitioner of astronomical calculations in mind and may form the
basis of explanatory material on lunar librations in a future edition of The Explanatory Supplement to the
Astronomical Almenac (ES). ‘

In this technical note the basic formulae are derived for the lunar librations and the position angle of the
axis of rotation. The lunar rotation angles in the JPL ephemeris must be transformed by a series of rotations
and then using simple vector algebra to angular quantities which can be substituted into the basic formulae.
These will then give the true or total lunar librations. From these and the optical (geometric) librations, the
physical librations can be computed. For the 2011 edition, the lunar rotation angles in DE403/LE403 are
used due to the availability of certain ephemeris-specific transformations (Konopliv et al. (2001)).

An algorithm and numerical example, using the same computer routines used for the AsA, showing all the
relevant stages in the computation of the librations and related quantities is given. Appendix C contains a
short description of the calculation of the position angle of the Moon’s bright limb and its phase or fraction
illuminated — geometrical quantities tabulated on the odd pages D7-D21 of Section D.

In the ES {1961) an approximate method was given to calculate the lunar librations but with no details of its
derivation. In Appendix B these formmlae are derived based on the method in Encke (1843). This method
was used primarily before the advent of high-speed electronic computers and is not used in the publications
currently to calculate the lunar librations. It is included here for the interested reader.




2. Basic formulae for the lunar libratiors and the position angle of the axis
2.1 The lunar librations

The mean rotational state of the Moon is described by Cassini’s empirical laws, which state that the descend-
ing node of the Moon’s equator coincides with the ascending node of the Moon’s orbit on the ecliptic; the
Moon’s equator maintains a gonstant inclination to the ecliptic; and the rotation rate is such that on average
the same side i is always facmg the Earth. Thus, ’che rot,atmnal rate must be equal to the rate of motion of
the Moon’s mean longitude. The actual rotation state has small periodic variations from this mean state
caused by dynamical perturbations, and these cause the physical librations of the Moon’s orientation. In
addition there are the much larger.optical librations in. its orientation as seen from the Earth, which are
due to variations in the rate of the Moon’s orbital motion, and to the inclination of the Moon’s equator to
its orbital plane {see Appendix A for an estimation of the magnitude of these librations). For a complete
definition of the rotational state of the Moon, a prime meridian must also be specified, and this was originally
chosen to be the mean central meridian of the side facing the Earth. Tfs direction in space will thus differ
by 180° from the mean longitude of the Moon, The situation is illustrated in Figure 1.

"North Pole
. of Ecliptic

C - e L Lﬂ"nar-o ..
. North Pole
> 3 Lunar

Sub-Earth

point Direction

to BEarth

Ecliptic

Figyre 1: The selenocentric sphere: ;h;ﬁuiﬁg the lunar orbit and the rela;tio:{;.ships between the sub-
Earth point M, the mean lunar equator and the eclipfic. S is the descending node of the lunar
equator on the ecliptic.

The ecliptic longitude and latitude of the Moon are A," 3 respectively and so the sub-Earth point M has
longitude and latitude A + 180°, —8. Las is the mean longitude of the Moon and {2 is the ascending nede.
The inclination of the ecliptic to the mean lunar equator is 7. The librations in longitude and latitude are
denoted by [ and b respectively

Formulae for computmg the optical librations can be derived by: relatmg to each other two expressions for
the véctor from the centre of the Moon towards the sub-Earth point M; one’of them referred to the ecliptic
" frame and the other to thedunar equatorial frame. Let O be the centre of the-selenocentric sphere. In Figure
1 consider firstly point M referred to right-handed axes O, in which O, is in direction OS, Oy in the
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ecliptic and O, in direction OC. Coordinates of M in this system are

(cos(—ﬂ) cos() +180° — 2)
cos{—f) sin(A + 180° — £2) )
sin(—g)

1)

Consider next, point M referred to axes Oy in which O, is in direction OS, Oy m the mean- equa.tor of
“the Moon and“Q, in the direction OL. The coordmates of M referred o these axes are

-f cosbcos{Ljyr -+ 180° — 2 + l-)
cos bsin(Lgr +7180° — 2+ 1)
. smb -

2)

The vectors in equati;;ns (1)and(2)are related throilgh' the rotation m};,_t:,}ix :“ - T
R 1 o 6 e v e
Rl(:"l)ﬂ_—" 0 ~cosl . —sinrl (3)
. 0 sini cosT

We note here in general that rotations in a right-handed set of axes with origin O about the 0z,0, and .O;
axes through an arbitrary angle ¢ are obtained by the rotation matrices Ry, R and R respectively, where

Ri(@y= [0 cosf sind . (4)
2 0 —sinf cosd

S cosf 0 —sing
T Re@)={ 0 1 o0 : )

- sinf 0 cosf .

... f cosf  sin@ 0O '
R3(0) = | —sin® cosf 0 : (6

¢ 0 1 .

From equatiéhs.(l) (2) and (3).we have

cosb cos(LM + 180° 24 I) 1 0 0 cos(—B3) cos(,\+ 180° @)
cosb sin(L s + 180° =02 +L) 1.0 cesl. . ~sinl |- cos(~B): sin{X + 180° — 2)
sind ' ; 0 sinl” cosi o sm(—ﬁ)

which can be written as

—cos b‘c-ds(‘L}i:&r -2\ AT o 0 —cosfBcos(A — 2)

—cosbsin{Lpy +1—12)-| =0 ecosI —sinf —cos Bsin(A - £2) (7N
sind 0 sinl cos/ —sginfg

In the lunar ephemeris A is referred to the true equinox of date,""r‘Jut Lyr and 2 are referred to the mean

equinox. The quantity A — {2 in equation (7) must be replaced by A — (22 + N), where NV is the nutation in
longitude. We can now wnte (7) as the three equations :

cosbeos(l + Las — £2) = cos Fcos(A — 2 — N) o [ (8)
r'osbsm(l + Ly — £2) = cos Lcos sin{A — 2 —N) -~ sin Ismﬁ : {9)

smb—--—smIcos,@sm()\ - N)—cosIsm,G’ < (10)

Equations (8), (9) and (10) are rigorous formulae for the computation of the optical'librations I and b, from
the values of I, 2 and Ljs, which describe the mean rotational state of the Moon, and from A and 3, the
ecliptic coordinates of the Moon. However, as is explained: in.Section 3, if I, £2 and Ljs are substituted
by modified quantities that include the effects of the dynamical perturbations of the Moon’s rotation; then
these rigorous formulae will give the values of the total librations.




An approximate method to compute the librations 1, b wis given in the ES (1961) p.319 based on formulae
introduced by Encke (1843). It is derived using the quantities B and [* shown in Figure 1 and was used
before the advent of fast electronic computers. A staternent of the method and an outline of its derivation
is given in Appendix B for the interested reader.

2.2 The position angle of the axis

The position angle of the-axis of rota.tlon is the angle that the lunar meridian through the apparent central
point of the disk towards the north lunar pole forms with the ‘celestial meridian through the central point,
measured eastwards from the celestial north point of the disk.

In determining expressions for the position angle we use the elements of the mean lunar equator referred to
the Earth equator.

s Eﬁuatgif
.. of Moon

Fzgm-e 2 Elements for Moons equator

These are deﬁ‘ned as:

- RS

) 1= the mc].ma,tlon of the mean equator of the Moon
a A . to the true equator of the Earth;
# A = the arc of the mean’ “gquator of the Moon from its
ascending node on the true equator of the Earth
" toit¥ astending node on the ecliptic of da[te;
Q= i;he-a.rc,of ’E'lj.e true equator of the Earth from the
Arue equino‘x of date to the ascending node of the
- mean édua.tor of the 1\_({0011 on the true equator
of the Earth. - ) '

The ascending node of the mean lunar equator on.the ecliptic is at the descending node of the mean lunar
orbit so '5' = f2 £ 180°. € is the true obliquity and the node is referred %0 the true equinox by increasing
{2 by the nutation in longitude N. From the spherlcal tna.ngle TS’Q' in Figure 2 the elements can be found
from the formulae .

. sinAsini =— smesm(ﬂ + N)

. (11)

dosAsmz =sinfcose —~ cosIsingcos(2+N) - - .- . (12)
cost = cos ] cose -l-sin I sine cos(f2-+N) ' (13)

sin 2’ sin4 = —sin I'sin(2 + N) _ (14)
_cos{2'sini = cosIsine —sinf cose cos(2 + N). * (15)

In Figure 3 the position angle ¢’ of the-axis is shown on.the selenocentric sphere. The geocentric right
ascension and declination of the Moon are a, § and so the right ascension and declination of the sub-Earth
point are e + 180°, --§, The descending node of the linar eqiator on the ecliptic is denoted by point S.
From the definition of A and (2" the arcs SQ = 360° — A and Y'Q = 7' --'180°. In the sphetical triangle
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NLM all angles and sides are known except angles LNM and MLN. Noting that XQ = 90° and YQ = 90°

these are found as follows:

LEM =180° —YP
=180° - (YP - TY)
=180°-TP+(YQ-YQ) "
= 180° — (o 180°) + (€' + 180“) ~90°

: “0’—a+90°
MLN = XT
=XQ~TQ
- =XQ~(5Q—5T)

=290° — (360° — A) + (Lps — 24 180° + 1)
= A+ Ly 41— 12-90°
The position angle {C') can be found from either of the two sets of formulae
cosbsinC’ = V'l‘-sjf'i;.}i_cos(.Q’ —a)
cosbcos O = cos cosi — sin Ssinzsin(2 — o)

or

cosésmC—smzcos(LM !2+A+l)
cosécos(" —coszcosb—smtsmbsm(LM .Q+A+l)

Sl Y ona e
Direction

" to-Earth
.North Pole ~°.

of Earth

Earth -
Equator

Mean Lunar
. Equator

Figure 3: The selenocentnc sphere showmg the relatzonshups bet'ween the sub-Earth pomt M the

mean lunar equator end the Earth’s equator.

(16)

17

(18)
(19)

(20)
(21)



3. Implementation of JPL lunar rotation angles

The JPL DE403/LE403 ephemeris, commonly known as DE403, includes an ephemeris for the rotation of
the Moon. The problem is to transform these rotation angles into variables equivalent to the quantities {2,
I, Ly and hence use equations (8), (9), (10), and (18), (19} (or (20), (21)) with these newly determined
quantities to compute librations Iz, br and p051t10n angle C'r. We refer to lr, by as the true or, total lunar
librations. .

The Euler angles describing the rotation.of the Moon, ¢, § and 7 are determined in Newhall and Williams
(1997). These angles are defined- relative to the .ICRS Earth equator and equinox. They describe the
orientation of the principal axes of inertia of the Moon (the PA system), sometimes called the axes of figure
gystem. We show how they can be transformed to give new Euler angles ¢¢, fc and ¢, which are defined
relative fo- the ecliptic-and equinox reference frame of date These transformed angles are used to describe
the orientation of a slightly different lunar axis system, which has one axis towards the mean Earth direction,

*and anbther a.long the rotation axis- (the ME systert), sometlmes called the mean Earth/ rotatlon axis system
From these quantltles we éan cdmput;e new .Q I and L M ;

The Euler a.ngles q&, 8, ftb and new . set gﬁc, 90, ’g[)c a.re shown in Flgures 4a, 4b respectlvely These are given
_in Newhall and Wﬂh@,ms (1997) ami jare mcluded in thls tech,mca.l note for convenience.,

Selenographlc
Prime Meridian

Ecliptic
“. ... ICRSEquinox

Figure 4a: Equatorial reference frame showing the Eilér angles-, 8, v, used to describe the lunar
pmnczpal axis (PA ) system. The value of ¢ shown in this dmgmm is negatwe

v :-.‘_':' R LR L PRI . N
o, X e PRI I, B
Al ‘ft;‘?n».',..'. P R R carton N Selenograph]c

RN " Prime Meridiaf
) s...‘. ""-.._._*:. r-:"; .
Echpnc - O =040 ",
of Date .
. - . . .'!k [
Equinox of Date. et
&l
'31}36:\
2

Figure 4b: Ecliptic reference frame showing the tmnsfawned Euler angles ¢c, bc, Yo, used to
describe the orientation of the lunar ME system
The angles are defined as:
¢ = the angle along the ICRS equator, from the ICRS X-axis to the ascending
node of the lunar equator;
! = the inclination of the lunar equator to the ICRS equator;
% = the angle along the lunar equator from the node to the lunar prime meridian;
¢¢ = the angle from the equinox of date tothe descending node of the lunar
equator on the ecliptic of date;” ‘




6c = the inclination of the lunar equator to the ecliptic of date;
e = the angle along the lunar equator from its descending node on the ecliptic
to the lunar prime meridian.

From Seidelmann et al. (2007) a vector p in the' PA system can be’ transformed to a vector q in the ME
system by a.pplymg three small rotations. Thls expressmn (Konophv et al (2001)) is

-q=R1( 0”1462) Rz( 9”0768) Rg( 3”8986) coee (22)

where Ry, Ra, Rg are given in -equations @)y (5); (8) respectively. "It must be noted that the numerical
values for the rota.tlons ini equatlon (22) are specxﬁe to DE4D3 and are dlfferent for other ephemendes

) The JPL lunar hbra.tmn ephemerls glves the onentatlon of the PA ,system reletlve to the ICRS So if we
know the components of any vector in the PA system, then the JPI, libration angles enable.us to refer it to
the ICRS. However the commonly-used reference system for lunar cartography is the ME system, Using the
inverse of equation (22) we'cafi convert any vector in the ME system into the PA system; and' then we can
use the JPL libration angles to convert to the ICRS: Finally we apply frame bias, precession and nutation,
and convert to the ecliptic reference frame of date. We apply this process to vectors in the ME system that
define the lunar pole-and the lunar prime meridian, and use the converted vectors to calculate lunar libration
angles for the ME systéin i the echptlc—of date f.rame SR

Let r*¢! be a vector in the ME system The vector ! in the PA system is found from the inverse of
equation (22) T -3 L
=Rsz (- 63”8986) Rg_l( 79”0768) Rl"l( —071462) r*!
= Ra(6 3”8986) R2 (7940768) R;(011462) r*°". (23)

In the ICRS equator system (see.FJgure 4{a)) this vector becomes
ry =Rg(~¢) Ra(—0) Ra(—¢) r1. (24)

Finally, in the ecliptic of date system this vector becomes

date _ R (S) N P B Tg: .- (25)

where B, P and N are the frame blaS, precessmn and nutatlon matrices respectlvely, and Rl(e) is the
rotation to the true ecliptic, of date reference frame. Note that B, the frame bias matrix, is included for
completeness, as its effect js well under 071. .

Now apply rotations in eque.tlons (23), (24), (25) to r*¢! = - (1,0, 0) and then to r%¢ = (0,0,1) and call the
resulting vectors x92t¢ and. z ““’.e.reSpectwelyFtlley are with respect to. the echptlc of date system.

In the ecliptic of date system let i, k He linit vectors along the O, O a.nd O, axes respectively. Define
the unit vector £2 to be in- the direction O to the descendmg node of the lunar equater on the ecliptic {3).
‘We have

ST P

‘ Q = @Fe—;(-k—l (26)

The angles ¢, ¢ and Yo a.re,fc;und using Figure 4(b), from the following formulae
cos g = 1. ﬂ 7 L (27)
singo =i ... .o (28)
cosfo = k. gdate ' ' o (29)
. costhg = Quxae s (30)
Csingio = (sek@)xde h (31)

From Newhall and Williams (1997) U s EE
o=+ - .. L {32)
be=I+4p. ... T e (33)
Mo=T—0+F 1800 . - .. (34)




Since (see ES (1961) p.107) _
F=Ly-1 ' (35)

equation (34) becomes using (35) )
R ' ' ¢0—7-J+LM .Q+180° (36)

Substltutmg now. for .Q from equatlon (32) into (36) we have
' " ge=T~0+Lu— ¢c+a+180°
¢c+¢o—180°—LM-'I-T o - ' (37)

From: equatlons (32), (33) and (37) the changes in !2 I and LM viz. o, pand T respectwely are as a result
of the physical librdtion. To obtain the tetal of truelibrations Ir, by we must therefore substitute ¢¢, 0
and Yo+ po — 180%for 2, I and Lar respectively-in equations (8}, (8} and {10). We note since the values
for 2 and Ly that are substituted-into equations (8}, (9) and (10) are referred to the true equinox we must
set N = 0. The posmon angle o4 T for the total 11brat10ns is then found using equations (18), (19) or (20),
(21).

We then can calcula.te the physmal hbrat;mns 5 P pr and 60’ from |

]

Somir—lo - - , (38)

gbp=br—bo . . .. . ... ., . (39
8CH =C'r —C'p o (40)

" where tli'é"\gi)tic’al ﬁb:fations lo, Bo"Ena‘-thév:poéftibn‘éh;gl’,é _C'" o ‘a:re ascompuf:ed from e@;ixation's in section 2.

The hehocentrlc echptlc longltude AH, and, Iatltude, ,6]!{, of the Moon ate determmed by calcula.tlng the

Moon' (X, ¥, Z) 5pr 'an1d: its length, dgM ARy .
AT e e s X s COSACOSIB Ce e NV
B v =d sm)\cos,B T . . (41)
RSO N2/ w Smﬁ
- ; AR A x\ ' éos'J\;gcdsﬁé' o . - _. ' )
Y | =ds| sindscosfBs | ' (42)
- z s A" sinfs - . . N .
XN\ (XN (XY
z s Z M z s ) Lot
N S N W R )
: Yorr L0 |
tan g = 45
an g = Xou (45)
'Z ' V ‘ : .{ . . " .
sinﬁﬂ—gj—;f SR R (46)

By substituting Ay for A and 8y for 8 in equations (8) and (9), the selenographlc longitude of the Sun,
lg, can be determined in a similar manner to the libration in longltude Similarly, substitition of these
quentities into equation (10) allows the determination of the selenographlc latitude, bs, in a similar manner
to the libration in latitude. The selenographic colongitude of the Sun is simply 90° — Ig, adjusted to lie in
the range 0° to 360°. . .

‘e

4. Numerical Example

The purpose of this numerical example is to calculate the quantities on the odd pages D7-D21 of the AsA,
most of which involve the lunar librations. The quantities tabulatéed are:
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s The Earth’s sclenographic longitude (Ir) and latitude (br), which correspond to the total librations
in longitude and latitude, respectively. ’

e The position angle of the axis of rotation (Cq).

« The physical librations, 8lp, dbp and the difference 6Cp, tabulated in thousandths of a degree.

» The Sun’s selenographic colongltude (90° —1s) and latitude (bs).

e The geometncal quantities fraction 111um1nated ( f:) and the position angle of the bright hmb (PAg).
4.1 Algorlthm for calculating the hbratmns and position angle of the axis

The method used involves two passes through a common process. The first pass calculates the optical
librations, which are geometrical in nature.-and adhere to.Cassini’s laws. The sefond pass. calculates the
total librations which includes the adopted rotational ephemeris of .the Moon.  In: this example the JPL

. DE403 Ephemeris is used (see Section 3). IAUJ-Standards of Fundamental Astronomy routines {SOFA) are
usad for obtaining. the frame bias,. precessmn and nutatlon The steps are given below.

Step“ 1 Obtain the apparent p051t10ns e, 6 d a.ud as, 55, da for the Moo and Sun, respectlvely, at time t.
Step 2 Obtain the nutation in longltude {A¢) and obliquity. (Ar—:) and the true obliquity [s) for time .

Step 3 Determine the apparent ecliptic positions A, ,8, and A, S, by rotating the apparent equatorial
coordinates around the X-axis by the angle &.

Step 4 Calculate the light time correctlon “for the Moon T =d/ec, where ¢ = 173-1446 3268 467 is the speed
of light in au/day.

Step 5 At time t — 7 form the true inclination I, 4+ Ae, where Ac is the nutatlon in obhqulty and T
" " the Newhall and Willians (1997) valte'sf the inclination.

Step 6 Also at’ time £ — 'r evaluate the mndamental a:cguments .Q and LM usmg Slmon et al (1994)

Step 7 Usmg equatxons (8) (9) and (10), caloulate the optlcal (geometnc) hbra.tmns l and b from A—02— N,
B, I and Lyr, where N = At is the nutation in longitude.

Step 8 Next, in order to determine C’; the position angle of the axis of rotation, determine 2’ from equations
{(14) and (15), and % from equation. (13), Thus.C’ may be calculated from equations (18) and (19).

Step 9 Now use the ephemeris and equatibné‘(27)' {(31) to determine the Euler angles ¢, 8¢ and Po. This
process includes the transformatlons from the system of the ephemeris (JPL DE403) to the true of
date system equations (23)- (25) .

Step 10 Then substitute ¢¢ for 2, 8¢ for I a.nd e + o — 180° for Ly and repeat steps (7), (8) and (9)
resulting this time in the tota.l llbratlons lT, by and C”

Step 11 Lastly the physical hbratmns, the dxﬂ"erences between the total and the optical librations are given
by equations (38)-(40). .

4.2 Numerical Example .

Calculate the quantities described 'in. this, Techmcal ‘Note for. 2011 June 01 at O*T'T, approximately 21 hours

before the instant of new Moon.

t = 2455713-5000000 2011 June 01 Q" TT

Step 1: The apparent positions of the Moon and Sun have been calculated using methods described in
Section B of The Astronomical Almanac.

Moon a = 579364896851
d = 229200527037
d = 00026441632 au ‘
Sun - as = 689564159796
s = 219975380381
dg = 10139593548 aun ]
Step 2: Nutations and the mean and true obliquity have been calculated using SOFA routines.
N=4y = 02004500032
Aes = —0°000366339
Em = 239437704624
e=gm+Ade = 239437428285




